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ABSTRACT

We derive formulas describing the disruption rate of the Oort comet cloud due to encounters with
interstellar clouds and field stars. For a comet with semimajor axis a = 25 000 AU, the half-life due to
encounters with stars is 3 10° yr, due to encounters with molecular clouds 3 10° yr, and due to
encounters with atomic clouds 5X 10'® yr. These results are based on a local density of molecular gas
Po=0.024 M /pc®, a mean column density Ny = 10°> cm~?, and a clumpiness factor of 2. We also
assume that the mean density of molecular gas averaged over the solar lifetime was a factor of 1.5 higher
than the present density. Thus it appears that molecular clouds have had a substantial, but not devastat-
ing, effect on the Oort cloud. However, many of the important parameters are rather uncertain, and the
best argument that the Oort cloud has survived encounters with interstellar clouds is an observational
one: a significant fraction of field stars are found in wide binary systems whose half-life due to en-
counters with interstellar clouds is within a factor of 2 of the half-life of the comets.

L. INTRODUCTION

For many years, it has been believed that the solar system
is surrounded by a spherical distribution of comets (the
“Oort cloud”; Oort 1950), in bound orbits with semimajor
axes around 25 000 AU (e.g., Marsden, Sekanina, and Ever-
hart 1978; this is the average value for new comets with large
perihelion values, which are affected least by nongravita-
tional effects). Encounters with passing interstellar clouds
(IC’s) can lead to the escape of comets from the Oort cloud,
an effect first pointed out by Biermann and Liist (1978) and
Biermann (1978). In later work, Clube and Napier (1982),
Napier and Staniucha (1982), and van den Bergh (1982) have
taken the more extreme view that the Oort cloud is “deci-
mated” by encounters with giant molecular clouds and
hence that it cannot be primordial. These authors suggest
that the Oort cloud must be continually replenished, either
by scattering comets out of a reservoir at much smaller radii
(a=10000 AU) or by capture of comets from interstellar
space. In a more careful analysis, Bailey (1983) concluded
that it was “unlikely” that the Oort cloud could survive.

The disruption of the Oort cloud is difficult to reconcile
with the high frequency among common G stars of wide
binary stars with projected separations 4r=0.1 pc =20 000
AU (Bahcall and Soneira 1981; Latham, Tonry, Bahcall,
Soneira, and Schechter 1984). Although the binary stars
have somewhat different properties from the Sun—in parti-
cular, they generally have large velocities perpendicular to
the Galactic plane and hence spend less time in the IC lay-
er—it is still somewhat surprising that they can survive if the
comets cannot. In any event, the most natural picture is that
the comet cloud formed at the time of formation of the solar
system when the density of interplanetary gas and dust was
high.

In this paper, we reinvestigate the disruptive effects of IC’s
on the Oort cloud, using a formula for the disruption of wide
binary stars that was developed by Bahcall, Hut, and Tre-
maine (1985, hereafter referred to as Paper I).
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II. FORMULA FOR THE DISRUPTION RATE

In Paper I, we showed that the half-life of a binary star
subject to encounters with pointlike field objects of mass M is
given by

Lz = lorit y;{i y M<M
=loies M>PM,. (1)
In this formula,
fo =y e @
pVa?

where 7 is a dimensionless constant of order unity, p is the
mass density of field objects, ¥ 'is the rms velocity of the field
objects relative to the binary, a is the semimajor axis of the
binary, and

_plmtm) Y MtV

Mcrit G 1/2 v

Here m,, m, are the masses of the binary components,
v> = G (m, + m,)/a is the mean-square relative velocity of
the binary components, and /3 is a dimensionless constant of
order unity. These equations are based on the assumption
that v< ¥ (the binary is “soft” in the terminology of Heggie
1975). We have calibrated the constants 5 and ¥ by numeri-
cal experiments and find S = 0.023 4+ 0.005, ¥y =2.2 + 0.5
(see Paper I).

The small mass limit M<M_;, corresponds to close en-
counters between a field object and one of the binary
members, with an impact parameter much smaller than the
semimajor axis of the binary orbit. In this limit, the binary is
torn apart gradually by the cumulative effect of many weak
encounters which cause small changes in the binding energy
(cf. Figure 1a of Paper I). The large mass limit M>M_;, cor-
responds to tidal encounters in which a field object passes at
a distance much larger than the binary separation. In the
large mass limit, the binary is generally disrupted by one or
two strong encounters (Figure 1b of Paper I).
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Now let us specialize to the case where the binary consists
of the Sun and a comet, and the field object is an IC. Of
course, the IC’s have finite sizes and a complicated clumpy
structure, whereas our formulas apply only when the field
objects are point masses. We shall discuss this issue further
below, but it is worth noting here that the finite sizes of the
IC’s can only reduce their perturbing effects. Hence formu-
las based on point-mass perturbers will yield lower limits to
the half-life.

We take m, =My, m,=0, a=25000 AU. Thus v

= (GMg/a)'"* =0. 19 km s~ . Let the rms relative velocity
be V= 22 km s—! (we justify this value later in the paper).
From equation (3) we find

M, =27M;. (4)
Thus any reasonable cloud mass M satisfies M>M_;,, and
we may write

(rmy + ;) M’
L= = R 5
1/2 By Gl/zpa3/2 7/ G1/2p 3/2 ( )

where By = 0.050 + 0.016. This formula is originally due to
Chandrasekhar (1944), who also analytically derived a very
similar numerical coefficient By = 0.080. However, Chan-
drasekhar apparently did not recognize that the formula
only applied for M>M_ ;.

The most striking feature of equation (5) is that the half-
life is independent of both the relative velocity ¥ and the
cloud mass M (so long as M>M_;,). This is an enormous
simplification since the masses of the IC’s are very poorly
known, and since the clumpy nature of the IC distribution
makes even the definition of the mass of an IC problematical.
The only property of the IC’s that we need to know is the
average density p.

For a comet at @ = 25 000 AU, we may write equation (5)
as

M 3
ti,=1.8X10"yr (—@;ﬁ) . (6)

For our purposes, it is convenient to rewrite this result in the
more general form

153 = (18X 107 yo) = £, £, £ fo L, (-;{—P/?) ™

where p,, is the density of IC’s in the midplane of the Galaxy
at the solar radius. The dimensionless efficiency factors f,,
Jorforfor f,» and f; represent modifications to the half-life due
to the following effects:

(1) f,: The Sun’s vertical motion carries it away from the
Galactic midplane to heights where the density of IC’s is
lower than the midplane. The factor f, is the ratio of the
disruption rate to the disruption rate which would obtain if
the Sun remained exactly in the midplane.

(2) £.: The Sun’s epicyclic motion carries it through a
range of Galactocentric radii. The factor £, is the ratio of the
disruption rate to the disruption rate which would obtain if
the Sun always remained at its present Galactocentric radi-
us.

(3) f;: The half-life formula (5) is based on the impulse
approximation, which is the approximation that the encoun-
ter time during which the IC passes by the Sun is small com-
pared to the orbital time of the comet around the Sun (4 X 10°
yr for @ = 25 000 AU). In some encounters of interest, this
approximation may fail. The factor f; is the ratio of the dis-
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ruption rate to the disruption rate which would obtain if the
impulse approximation were valid for all encounters.

(4) f.: The IC’s have finite size. The factor f; is the ratio of
the disruption rate to the disruption rate which would obtain
if the IC’s were collapsed into point masses.

(5)/,: The density of IC’s was probably higher in the past.
The factor f,, is the ratio of the disruption rate to the disrup-
tion rate which we estimate by assuming that the density of
IC’s has been independent of time.

(6) f;: The encounter rate between IC’s and the solar sys-
tem is enhanced by gravitational focusing, an effect neglect-
ed in deriving equation (6). The factor £, is the increase in the
disruption rate due to the fact that the relative orbit of the IC
and the solar system is a hyperbola rather than a straight
line.

I1I. EVALUATION OF THE EFFICIENCY FACTORS

There are two main types of IC’s: atomic or H 1 clouds and
molecular or H, clouds. Since the properties of these two
types of IC are very different, we shall consider their disrup-
tive effects separately.

a) Molecular Clouds

We can write the density of molecular clouds (MC’s) in the
solar neighborhood as

—Zhn Z%/z
(2) =poe = ¥, (8)

where z is the distance above the midplane and z,,, is the
half-thickness of the MC’s. Sanders, Solomon, and Scoville
(1984) estimate that the density and half-thickness of molec-
ular gas at the solar radius are Po= 0.033 M /pc® and
z,;, = 75 pc. One major uncertainty in p, is in the conversion
factor from the integrated CO line intensity to column den-
sity of H,, which they take to be N (H,)/f T,(CO)dv
= 3.6 10?° molecules cm ™2 K" (km s ™')™ . Bloemen et
al.(1984) use gamma-ray observations by the COS-B satellite
to provide an independent determination of this conversion
factor, and arrive at a value lower than that used by Sanders
etal.byafactor2.6/3.6 =0.7, whlch would lead to a density
of molecular gas p, = 0.024 M, /pc’. Dame and Thaddeus
(1985) find an even lower value, po=0.013M /pc3 We will
adopt the intermediate value p, = 0.024 M /pc in the fol-
lowing discussion; a higher or lower choice for the density
simply scales to a proportionately higher or lower destruc-
tion rate of comets.* Thus equation (7) becomes

ti =(15X10°y) " L L i S fo foe )

We shall now estimate the efficiency factors.

1) The z-mode factor f,

The proper value to use for the MC density in equations
for the half-life is the time-averaged density of MC’s in the
vicinity of the Sun. This average is smaller than p, because
the vertical motion of the Sun regularly carries it partway
out of the cloud layer. The factor f, is simply the ratio of this
time-averaged density to p,. To determine f;, we must first
know the Sun’s vertical orbit. We may compute the present
solar orbit by assuming that the total density in the Galactic
disk p,,, is independent of z. This should be a good approxi-

*Note that an upper limit p, < 0.17 M, /pc? is given by the Oort limit to the
total density (Bahcall 1984a,b).
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mation because most of the mass probably resides in an old
population with a large half-thickness. With this assump-
tion, the potential is that of an harmonic oscillator,
® (z2) =27Gp,,, 2%, and the Sun’s vertical energy
E, =1v} + ®(2) is conserved. Using equation (8) for the
density distribution of IC’s, it is then straightforward to
show that

[, = e *Iyx), (10)
where I(x) is a modified Bessel function and
E . In2

47Gp,o, Z?/z .

This result is given in integral form as equation (55) of Bailey
(1983). Since the Sun is presently close to the Galactic mid-
plane, we may take E, = vZ, where v, =7 km s~ is our
present z velocity relative to the local standard of rest. For
future use, we also define the rms z velocity of the Sun oY
because the time-averaged kinetic energy is equal to half the
total energy in a quadratic potential, we have

0% = Eo» (12)

and thus 0, = 7km ~!/{2 = 5 km s ™! at the present ep-
och. Bahcall (1984a) gives p,,, = 0.185 + 0.02 M, /pc® and
we shall take z;,, = 75 pc following the estimate of Sanders
et al. (1984). With these parameters, equations (10) and (11)
yield x = 0.30 and f, = 0.76 for the present solar orbit.

However, this estimate does not account for the diffusion
of the Sun in velocity space over its lifetime. There is consid-
erable evidence that disk stars are born with very small z
velocities, and that their z velocities gradually increase by a
diffusion process or random walk in velocity space, perhaps
due to encounters with MC’s or transient spiral arms (Wie-
len 1977). Thus we must consider the solar z energy and rms
velocity to be functions of time E, (¢ ), 0, (¢ ), where 0, (¢)
is understood to refer to an average over a time interval long
compared to the orbit period but short compared to the age
of the Sun. Notice that E, (¢ = 0) = 0 and 0,4 (t = 0) =0,
since we assume that the Sun is born with a small peculiar
velocity at ¢ = 0, and note that equation (12) still holds at
each time . At the present epoch ¢,, the rms z velocity of GO
dwarfs like the Sun is 0, g (fo) = 20 km s~! (Mihalas and
Binney 1981, p. 423), which is quite large compared to
0.6 (t) = 5km s '. Thus the Sun’s present low z velocity is a
rather unusual chance event, and we should expect that its z
velocity was higher in the past. We must therefore attempt to
estimate the Sun’s rms z velocity averaged over its entire
lifetime. To obtain a crude estimate, we may use a simple
model in which the diffusion rate is independent of both time
and the velocity of the star.* In this model, the mean-square
z velocity of a group of stars increases linearly with time.
Hence the rms z velocity of the GO dwarfs, averaged over
their lifetime, is simply

(TLaolt)? = 0,olto)/N2 = 14 km s~ (13)

In the absence of other information, this would be the best
estimate for the Sun’s lifetime averaged rms z velocity. How-
ever, we also know the present value of the Sun’s rms z veloc-
ity. Thus we should only consider those paths in the random

*The assumption that the diffusion rate is independent of velocity has indi-
rect observational support: a diffusion process of this sort produces a Gaus-
sian distribution of z velocities, consistent with the shape of the observed
distribution (Bahcall 1984b).
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walk which end at the present value of the rms z velocity

0. (%) From the theory of Brownian motion in a quadratic

potential (e.g., Chandrasekhar 1943), it can be shown that,

with this constraint, the best estimate of the mean-square z

velocity at time ¢ is

2

o2 t) = Zaolte) o=t 4 02 1 (14)
Iy to

where we have assumed that the Sun and all the other GO

stars were born at time ¢z = 0. Thus, averaging over ¢, we find

the best estimate for the Sun’s lifetime average rms z velocity,

(02@(7»”2: [%Uf,so(to) +§Uzz@(to)]l/2' (15)
Inserting 0, o (fp) = 20 km s~" and 0, (t,) = 5 km s ™', we
find (02;(f))"/> = 8.6 km s~'. The best estimate for the
Sun’s lifetime average z energy is thus (E,(f)) = (8.6
km s™')%, which by equations (10) and (11) yields x = 0.91
and

f. =0.5, (16)
the value we shall use henceforth.

2) The epicycle factor f,*

The density of MC’s in the vicinity of the Sun also depends
on the distance of the Sun from the Galactic center. The
proper value to use for p, in the half-life equation (7) is the
average value of p, over one radial period of the solar orbit.
Epicycle theory (e.g., Chandrasekhar 1942) shows that the
mean or guiding center radius of the solar orbit R, is related
to the Sun’s present radius R by

Re — R = v¢_..£ s (17)
2B

where B is one of Oort’s constants and v, — V, is the solar
velocity relative to the local standard of rest in the direction
of Galactic rotation. Using R = 10 kpc, v, — V. = 12km
s~! (Mihalas and Binney 1981, p. 400), and B =11
km s~!kpc~! (Mihalas and Binney 1981, p. 480) we find
R, — R = 0.5 kpc. Similar calculations show that the am-
plitude of the Sun’s radial excursions is 0.6 kpc; that is, the
Sun oscillates between about 9.9 and 11.1 kpc from the Ga-
lactic center, and is presently near the pericenter of its orbit.
The surface density of molecular gas is a steeply falling func-
tion of Galactocentric radius near the Sun. If the decrease in
surface density is reflected by a similar decrease in the mid-
plane volume density (i.e., if the half-thickness remains
roughly constant), then the time-averaged value of the mid-
plane volume density of molecular gas is smaller than its
value at the present solar radius. Observations of external
galaxies generally show that the CO emission is proportional
to the optical surface brightness (cf. Fig. 14 of Sanders et al.
1984); adopting an exponential disk model with a scale
length of 4.4 kpc (from Bahcall and Soneira 1980, scaled to a
solar radius of 10 kpc), we find that the surface density at the

T The importance of this factor was pointed out to us by R. Wielen. Wielen
has also stressed that diffusion of the Sun in velocity space can affect both
the epicycle amplitude and the mean radius of the solar orbit, and that
changes in either quantity can affect the time-averaged density of MC’s in
the solar vicinity. For example, Wielen (1977) finds that diffusion causes a
slow outward drift of about 1 kpc over 10'° yr in his numerical simulations
of Galactic orbits. We have not included these effects since they are likely to
be small, and, in addition they are very difficult to disentangle from any
possible evolution of the radial distribution of the MC’s themselves.
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mean radius R, is smaller than at R by a factor 0.9. Observa-
tions by Sanders et al. (1984) suggest a more rapid falloff,
with the surface density dropping by a factor of 5 between 10
and 11.5 kpc, in which case the surface density at R, would
be smaller than at R by about a factor of 0.5. As a compro-
mise, we adopt

£, =01 (18)

3) The finite-time factor f,

The validity of the impulse approximation can be parame-
trized by the quantity

.

X V. (19)
where n = (GM, /a®)"/? is the mean motion of the comet, p is
the impact parameter of the cloud, and Vj is the relative
velocity. For y«1, the impulse approximation is valid. For
x> 1, the actual energy change is reduced from the change
predicted by the impulse approximation by a factor propor-
tionaltoy 3/2 exp( — y )(Yabushita 1972).* Thusfory X 1the
impulse approximation seriously overestimates the energy
change in an encounter.

To determine whether the failure of the impulse approxi-
mation affects our estimates of the half-life, we must esti-
mate the impact parameters of the encounters which domi-
nate the disruption rate. Assuming that the impulse
approximation is valid and that binaries are disrupted in a
single encounter, a straightforward but tedious calculation
shows that the mean-square impact parameter of all en-
counters that cause disruption is

G 1/2Ma3/2
(my 4+ my)'?V

=ﬁ6a2( M ) (20)

crit

pi, =6

where the second line follows from equation (3), and the di-
mensionless factor § = 5.3%/227%/2771/2 = 1.94 if the dis-
tribution of relative velocities is Maxwellian." Thus the typi-
cal value of y in an encounter which disrupts comets is

np,, v M 172
Xor =7y V(M ) 2

crit

where v is the rms velocity of the comets. Inserting v = 0.19
kms™!, V=22 kms™~! (to be derived below), and M_;,

= 2.7 M, from Eq. (4), we find
172
Yo =11 (L) .

10° M,

Thus the impulse approximation should be accurate so long
as Yo, S 1, 1€, for M S 10°M,. Solomon and Sanders (1979)

(22)

*For precisely circular orbits, the reduction factor is proportional to
x *"%exp| — 2y ) (Spitzer 1958).

T An approximate version of this result can be derived by a simple heuristic
argument. Since the maximum tidal force from a passing MC falls rapidly
with increasing impact parameter p, the disruption rate is strongly domi-
nated by the encounters with the smallest impact parameters. In one half-
life ¢,/,, the number of encounters with impact parameters less than p is
N(p.ty)2) = (87/3)" /%% p/M V1, 5. Setting N (p,t,,,) = 1 and evaluating
t,/, using equation (5), we find that the impact parameter of the closest
encounter is given by p? = 6.9G '/2Ma**/[V (m, + m,)"/?], which is the
same as (20) except for the numerical factor.
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estimate that MC’s have a typical mass of 5 10° M, with
most MC masses lying in the range 10> M, to 10° M, . Blitz
(1979) quotes a mean mass of 10° M, with a range from
3X10* Mg, to 3 X 10° M. Thus the use of the impulse ap-
proximation should be safe, except perhaps for the most
massive clouds. Even if the cloud masses have been underes-
timated, the error introduced by the impulse approximation
should not be too severe, for two reasons. (1) y,, represents
the typical value of y for the closest encounter expected in a
time interval of about #,,, [see footnote following equation
(20)]. If y,, ® 1, then the comets survive until an encounter
occurs with y < 1, which requires a time interval longer by a
factor y2,. Thus the half-life is lengthened by a factor
max(y 2,,1); and even if the appropriate MC mass were as
large as, say, 2 X 10® M, the impulse approximation would
only underestimate the half-life by a factor of 2. (2) Our esti-
mates of the half-life are based on the assumption that the
MC’s are mass points. In fact, the cloud radii can easily ex-
ceed p,, (as below), so that the most destructive encounters
may involve penetration of the cloud by the solar system. In
this case, the proper value of y,, depends on whether the
distribution of mass in the cloud is smooth or clumpy. If the
mass distribution is smooth, we should replace p,, in equa-
tion (21) by the cloud radius r,. Solomon and Sanders (1979)
estimate that a cloud with mass 5 10° M, has r, = 20 pc,
so that y,, = 1.4, in which case the impulse approximation
could overestimate the disruption rate by a factor of 2.5 for
homogeneous clouds. However, it appears that the distribu-
tion of mass in the clouds is clumpy, and in this case the
proper value of y,, for a penetrating encounter is determined
by the mass and radius of an individual clump; these will be
much smaller than the mass and radius of the whole MC and
hence on the whole the impulse approximation should be
quite good.

In view of these considerations, the most reasonable pro-
cedure is to assume that the impulse approximation is always
valid, and thus to take

f=1 (23)

At this point, we pause to derive the value of the rms
relative velocity ¥, which we have used in equations (4) and
(22). We first find the Sun’s lifetime average rms velocity
(0% (t))!?. Using arguments similar to those leading to
equation (15), we have

(Tooro () 2 = [} Trorcolto) +14 atzot,Q(tO)] 2, (24)

where 0., Go(fo) = 37 km s ™" is the present rms velocity of
GO dwarfs relative to the local standard of rest (Mihalas and
Binney 1981, p. 423), and 0, (fo) = 17 km s~ is the pres-
ent rms velocity of the Sun relative to the local standard of
rest, obtained using the epicyclic orbit discussed after equa-
tion (17). Thus the lifetime average rms velocity of the Sun is

(afot@(t))m: 18kms™ . (25)

We next compute the rms velocity of the MC’s. Their rms z
velocity o, yc is related to the half-thickness z, ,, by

,277'G o
O.mc = Z21/2 T,;‘t—. H (26)

adopting z,,, =75 pc and p,, =0.185 M /pc’® we find
0,mc = 6.4 km s~ The ratio of the rms z velocity to the

rms total velocity depends on the shape of the velocity ellip-
soid. If the ellipsoid is spherical, 0y mc = V30,1c = 11
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km s~ ; if the ellipsoid has the same shape as the stellar ve-
locity ellipsoid (Wielen 1977) then o, e = 2.40,4c = 15
km s~'. We shall use a compromise value

Oprmc = 13kms™. (27)

For want of a better assumption, we shall assume that o, ysc
is independent of time. Hence the best estimate for the rms
relative velocity of the Sun and a MC is

V= [Utzot,MC + <at20t,®(t N1 2=22kms™", (28)
the value that we use in equations (4) and (22).
4) The finite-size factor f,

According to equations (20) and (4), the rms impact pa-
rameter of the encounters which disrupt a comet at a
=25000 AU is
172
., = 0.016 pe (—4’—) . (29)
MG)

If p,, is smaller than the cloud radius 7., then the disruptive
effect of the clouds will be reduced. In terms of the mean
surface density of the cloud, > =M /#r, p,, <r. if 2
$1.2X10° Mg, pc™?, or, in terms of the column density of
hydrogen, if Ny $1Xx102 cm~2 Solomon and Sanders
(1979) estimate that their typical cloud has N;; = 3 X 10?2
cm ™2, Rowan-Robinson (1979) finds that the mean column
density of MC’s is about NV,; = 6X 10?! cm ™2 with a spread
of a factor 2-3, and Spitzer (1978) quotes a similar value.
Thus the approximation that the clouds are point masses
may not be valid.

To analyze this effect, we consider the limit where the IC’s
are very diffuse, so that the maximum velocity perturbation
received by a binary during a passage through a cloud is
much less than the escape speed. We show in the Appendix
that in this case the half-life is

Vim, +m,)
Gpa’s,,C '
where 2, is the mean surface density of a cloud and the
clumping factor C is given by
Af,>%dA
(§2dAy’
where 2 is the cloud surface density and the integral is over
the area of the cloud.

One can get a feeling for the magnitude of the dimension-
less clumping factor C by considering two extreme cases. In
the first case, we have a complete lack of clumping, which
defines a homogeneous cloud, for which C = 9/8, slightly
larger than unity, because even for a homogeneous cloud the
column density is not constant but falls off from center to
edge. In the second case, we introduce strong clumping by
dividing all the matter in the cloud over an arbitrary number
of identical homogeneous subclumps, which are small
enough so that none of them overlap when projected on the
sky. In this case, C =2 f 5 !, where f5 is the area-filling fac-
tor, i.e., the fraction of the projected area on the sky covered
by subclumps.

The finite-size factor follows from equations (5) and (30) as
f,=2,C/Z,,, where

t1/, = 0.0025 (30)

(31)

Vim, + mz)l/2
G 1232

With our standard parameters a =25000 AU, V=22

3. =005 (32)
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kms™!, m, +m, =M, we find ; =400 M pc~?,
which corresponds to Ny = 3.7X 10?> cm 2. Since the dis-
ruption rate can never exceed the value for point masses, we
may combine the calculations for the point-mass limit and
the diffuse-cloud limit by the interpolation formula

. [(2.,C
S, =min ( > ,1) . (33)
Our expression for the clumping factor C is only valid when
the clouds are diffuse and will overestimate the disruptive
effects if the surface density is high; to account for this, we
should replace the surface density 2 in (31) by min(3,X_;, ).

The uncertainty in the disruption rate resulting from the
diffuse nature of the MC’s is probably the most serious un-
certainty in the calculations of this paper, both because the
calibration of the mean surface density is uncertain, and be-
cause the degree of clumpiness in the clouds is poorly
known. Our best estimate is that the mean column densities
are typically lower than X _;, by a factor of 5 or so, leading to
f; = 0.2, but that clumpiness increases the value of f; by a
factor of 2 or 3. Values of f; close to unity seem unlikely
since this requires that all of the molecular gas is in regions
with 2R ;.. Thus, we take

£, =05, (34)

with the understanding that f, may lie anywhere in the
range 1>f, R 0.1.

5) The different-past factor f,

To estimate this factor, we assume that the half-thickness
of the MC layer and the fraction of gas in MC’s are indepen-
dent of time. Thus f, is simply the ratio of the average gas
surface density over the past 4.5 10° yr to the present gas
surface density. This ratio can be estimated from evolution-
ary models of the Galactic disk (see Tinsley 1980 for a re-
view). Ostriker and Thuan’s (1975) models give f, =14,
while Twarog’s (1980) model gives f, = 2.6. In general, a
relatively small value of f,, like Ostriker and Thuan’s, is
preferable for two reasons: (1) Twarog’s analysis of the obser-
vations shows that the star-formation rate has remained rel-
atively constant over the past 4 X 10° yr, and this result
would be surprising if the gas surface density changed by a
large factor over that period. (2) The midpoint of the Sun’s
lifetime was only 2.3 10° yr ago, which is only about 15%
of the age of the Galaxy, and it seems unreasonable that the
gas surface density should change by as much as a factor of 2
over such a short interval.* Thus we feel that f, ~2 is an
upper limit, and we adopt

f, =15, (35)

with the understanding that f, could lie anywhere in the
range 1 5f, 52.

6) The gravitational focusing factor f,

The principal effect of gravitational focusing is to enhance
the collision rate between the solar system and the MC’s. If
we approximate the distribution of relative velocities as an
isotropic Maxwellian with rms velocity ¥ = 22 km s ™!, then

*Thus, for example, Twarog’s model predicts that all of the interstellar gas
will be converted to stars in less than 1.5X 10° yr, a very short time com-
pared with the age of the Galaxy.
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the collision rate with clouds of mass M and radius 7, is
increased by a factor*

3GM + M) (M Ny )V’

—_—— =1t | , 36
+ Vr, M, 10 cm™—? (36)
where Ny is the mean column density per cloud and

M, =4Xx10° M,
Thus, for a typical cloud with Ny =~10** cm ™ (see Subsec.
a4), the enhancement of the collision rate is generally quite
small; even if M = 10° M, the enhancement is only a factor
of 1.5. This result shows that for most encounters, the effect

of gravitational focusing is quite small, and we can safely
take

fi=1 (37)

b) Atomic Clouds

The mean H 1 density in the Galactic plane is 0.7 cm™
(Spitzer 1978, hereafter referred to as S78, Sec. 3.3b), corre-
sponding to p, = 0.024 M, /pc’. Thus equation (7) yields

ti;) =(15x10%yr)" £, f. £, /. 1, S (38)

1) The z-motion factor f,

1

3

The half-thickness of the H 1layeris z, ,, = 120 pc accord-
ing to S78 (Sec. 11.1a); thus, using our value for the Sun’s
lifetime average z energy (E,(r)) =(8.6kms™')* and
equation (11), we find x = 0.35 and

£, =07 (39)

2) The epicycle factor f,

The midplane density of H 1is almost independent of Ga-
lactocentric radius between 7 and 11 kpc (S78, Sec. 3.3b);
hence

fo=1 (40)

3) The finite-time factor f,

The mass of the “standard” H 1 cloud is about 400 M,
|
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(S78, Table 7.2) so that y,, <1 [equation (22)], and
fo=1 (41)
4) The finite-size factor f,

Column densities of H 1 clouds show a large spread. The
standard H 1 cloud has N, = 43X 10%° cm—2(S78, Sec. 7.2a),
while the rarer “large” clouds have Ny = 1.7 X 10*! cm—2
(S78, Table 7.1), and the smallest clouds (“cloudlets”) seen in
21-cm emission have Ny = 2X 10" cm™2 (S78 Sec. 3.3b).
The column densities are on average significantly smaller
than those of molecular clouds. This is not surprising, since
the fraction of H, in a cloud can be expected to be larger in a
denser cloud, where formation of H, molecules (on grain
surfaces) is more efficient (cf. Shull and Beckwith 1982). Sav-
age, Bohlin, Drake, and Budich (1977) find in a survey with
the Copernicus ultraviolet telescope that the fraction of mo-
lecular hydrogen in interstellar clouds undergoes a transi-
tion from low to high values around E (B — V') =0.08, corre-
sponding to Ny; ~ 5 X 10?° cm 2. This does not mean that no
dominantly atomic clouds exist at somewhat higher column
densities (cf. Fig. 6 in Savage et al.), but it does imply that in
typical H 1clouds the surface density is not much larger than
Ny ~10?! cm ™2 The clouds do not appear to be very
clumpy. Thus we choose

f. =0.014, (42)
with a firm upper limit f; 0.03.

3) The different-past factor f,

We use the same different-past factor for atomic and mo-
lecular gas [Eq. (35)],

f,=15. (43)

6) The gravitational focusing factor f,

Gravitational focusing is unimportant for atomic hydro-
gen clouds, which are less massive and have lower escape
speed than molecular clouds [cf. Eq. (36)], and therefore

=1 (44)

IV. RESULTS FOR THE DISRUPTION RATE, AND COMPARISON WITH OTHER AUTHORS

For the half-life of comets (@ = 25 000 AU) due to encounters with molecular clouds, we find

£ = (18X 107 o) £, £, £, fo o fo (7"/7)
©

= (1.8X 107 yr) =1 X 0.5X0.7X 1X0.5% 1.5X 1 X 0.024 = (2.8 X 10° yr) . (45)

For the half-life due to encounters with atomic clouds, we find

¢ =(8X107yr) " f £ £ £ o o (—M—P/?)
(O}

= (1.8X 107 yr) =1 0.7X 1 X 1 X0.014X 1.5 1 0.024 = (5.0% 10'° yr)~ 1, (46)

Adding reaction rates gives a combined half-life

ty =(2.8%x10%yr)™' + (50X 10" yr)~' = (2.7x 10° yr) ™!,

(47)

*The analogous equation (2) in Clube and Napier (1982) and equation (2) in Napier and Staniucha (1982) both are incorrect, apparently because in the
Maxwellian they leave out the factor v* which arises from the velocity volume element d 3v = 4mv2dv.
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or roughly 60% the age of the solar system.

The principal uncertainties in this result are in the finite
size factor f; and in the mean molecular density p,. Even in
the extreme case where f, = 1, the Oort cloud would be
completely disrupted (say, #,,, less than | of the age of the
solar system, so that only 27> = 0.03 of the original comets
remain) only if p, % 0.038 M, /pc’, somewhat beyond the
range of values quoted in Sec. IIla. However, the results are
strongly dependent on the relatively uncertain conversion
from CO intensity to column density of H,, which affects the
half-life both through the mean density p, and through the
efficiency factor f,. A factor of 2 decrease in the conversion
factor yields a factor of 4 increase in the half-life, although a
factor of 2 increase yields less than a factor of 4 decrease in
the half-life since f; is already close to unity. Thus our best
estimate is that IC’s have had a substantial—but not devas-
tating—effect on the Oort cloud, removing perhaps two-
thirds of the cloud at @ = 25 000 AU.

It is interesting to compare this result with the half-life of
the Oort cloud due to encounters with field stars, which can
be estimated using equation (1) in the limit M<M_,. We
replacepMby f3;  n(M)M 2 dM, where n(M )is the number
density of stars with mass M. Using parameters from Bahcall
and Soneira (1980), and taking M, to be the minimum mass
for hydrogen burning (M, ~0.085 M), we find pM

= 0.030 M,>/pc’. We estimate V' by adding in quadrature
the Sun’s lifetime average rms velocity of 18 km/s [equation
(25)] and the rms velocity of local stars of 40 km/s. For com-
etsata = 25 000 AU, the half-life due to stellar encounters is
thent,,, = 3X 10° yr, almost the same as our best estimate of
the half-life due to IC’s. Thus IC’s appear to be about as
effective as stars in pruning the cloud, although the uncer-
tainties in the cloud estimate are large.

Biermann and Liist (1978) were the first to call attention to
the potentially damaging effects of molecular clouds on the
Oort cloud. They gave an example of a very dense and very
heavy molecular cloud, and showed that a passage of the Sun
near such a cloud would significantly deplete the comet
cloud. The first quantitative analysis of the disruption rate
was due to Biermann (1978), who found that encounters with
IC’s would seriously deplete the Oort cloud at semimajor
axes aRX 25000 AU. He concluded that the Oort comet
cloud hypothesis was viable, but that the outer radius of the
comet cloud was somewhat smaller than originally envis-
aged by Oort (1950). We basically agree with Biermann’s
(1978) analysis, and with his conclusion that a primordial
comet cloud can survive passages with interstellar clouds.
Our results can be compared with the help of equation (7).
Biermann starts with a density of p, = 0.028 M, /pc?, simi-
lar to our value p, = 0.024 M, /pc’. He does not take into
account the vertical or epicyclic motion of the Sun, and
thereby effectively uses f, =f, = 1. He also neglects th(i

tod = (L8X 107 y0) " f, £ fi S fo (7"/?)
®©

=(1.8X107yr)7' X1 X 1X1Xx1x1.5X1.9x0.027 =

For comparison, Napier and Staniucha claim that the origi-
nal comet population has been depleted by a factor of
1.4 1073 over the age of the solar system. That number
would imply a half-life for comet disruption of about 5 X 108
yr. Thus they underestimate the disruption rate by a factor of
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time evolution of the gas density, setting f, = 1. Like us, he
sets f, = f, = 1. For a typical cloud, he takes M = 10°* MG%
and r,=3 pc, which implies Ny =1x102? cm~

= 0.27N_,;, and therefore f; = 0.3 With these values, equa-
tion (7) would give ¢,,, = 2.3 10° yr. This result is roughly
consistent with Biermann’s conclusion that comets with
@ =25000 AU are disrupted in about the lifetime of the
solar system, although Biermann’s formulas appear to un-
derestimate the disruption rate by about a factor of 2 relative
to the more accurate equation (30).

Napier and Staniucha (1982) and van den Bergh (1982)
obtained quite different results from those found by Bier-
mann. Their results implied that all but the innermost com-
ets (2 10° AU) would have been lost through encounters
with MC’s. Why are their results so different from ours?
First of all, van den Bergh’s analysis is simply incorrect,
since he computes the tidal radius that would be imposed on
the Oort cloud if the Sun were in a circular orbit around an
MC. The disruptive effect of a hyperbolic encounter with a
MC is much smaller.

Napier and Staniucha’s work needs a more careful analy-
sis. They consider a range of cloud masses, but concentrate
on a typical cloud mass of 5X 10° M, which results in an
average density of molecular cloud material p, = 0.027
Mg, /pc®, only slightly larger than our value p, = 0.024
M, /pc’. However, most of their efficiency factors are very
different from ours. (1): Their z-motion factor f, is unity,
since they do not correct for this effect. Their adopted half-
thickness is 50 pc, instead of our 75 pc, which would lead to
the value f, = 0.3, if the z motion of the Sun out of the MC
layer were properly taken into account using equation (10).
(2): Their epicycle factor f, is unity, since they do not correct
for this effect. (3): Their finite-time factor f,is unity, as is
ours. (4): Their finite-size factor f; is unity. They adopt val-
ues for a typical cloud of M = 5X10° M, and r, = 20 pc.
These values imply a column density Ny = 3.6 X 10?2 cm ™2
~N_,,, and therefore an efficiency factor f, =1, which is
larger than our value f; = 0.5. In addition, they assumed
that all the mass was clumped in 25 equal subcondensations
of 2 X 10* M, each, with radii of 2 pc each. For each subcon-
densation, the column density Ny = 1.4X10%cm™?

= 4N_,,, far in excess of observed values. Consistent with
their assumption that Ny > N, , they treat the subclumps as
point masses, which implies that they used an effective value
f. = 1. (5): Their different-past factor f, = 1.5, in agree-
ment with our value. (6): Their gravitational focusing factor
J, is significantly larger than ours. For their choice of a mass
M=5%x10°M,  and a typical encounter velocity of 20 km/
s, they give f, = 1.9, whereas wearriveat f, ~ 1. Napier and
Staniucha’s choice of efficiency factors therefore implies the
half-life

(23X 10% yr)~". (48)

—
2, given their assumptions. Their short lifetime arises entire-

ly from their efficiency factors: compared with the values
derived in the present paper, their choices for the six effi-
ciency factors overestimate the rate of comet stripping by a
factor of 10. The one-sided accumulation of all these effects
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has led them to overestimate the rate of comet disruption by
over an order of magnitude, reducing the half-life from
2.7%10° to 2.3 X 108 yr.

Bailey (1983) has also investigated the disruption of the
Oort cloud by encounters with MC’s. He found that it was
“‘unlikely”’ that the Oort cloud could survive for the age of
the solar system. Bailey’s equation (51) states that a comet at
radius 7> 7, can escape in 4.5 X 10° yr, where

, - 12x10°AU ( 1M, /pc’ )2’3

0
1/3
8ot Po

Here p,, is the density of MC’s, and Bailey’s g,, like our f;,
is equal to unity if there are no penetrating encounters. Our
equation (5) can be cast into an analogous form (leaving out
the efficiency factors other than f):

_6.2Xx10°AU 1M /pc® \° (4.5% 10° yr\¥3 5%
a= f2/3 Po ( )

Thus Bailey has underestimated the disruptive effect of the
MC’s by about a factor of 2 (in semimajor axis at fixed time)
or 3 (in time at fixed semimajor axis). In contrast to Napier
and Staniucha, Bailey corrects for the z motion of the Sun,
using an efficiency factor f, = 0.4, which is close to our val-
ue f, = 0.5. However, he does not correct for the epicyclic
motion of the Sun, and uses a finite-size factor f, that is of
order unity, rather than the value 0.5 that we prefer. These
factors appear to account for the difference between Bailey’s
conclusion and our own.

(49)

L2

V. WIDE BINARIES

A significant fraction of stars are found in wide binary
systems with projected separations A7 =0.1 pc =20 000 AU
1
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(Bahcall and Soneira 1981; Latham et al. 1984). These bina-
ries are almost certainly primordial*; and their survival
therefore provides an important constraint on the local dis-
ruption rate.

The half-life of wide binaries due to encounters with IC’s
is given by equation (5). Since the projected separations of the
binary components are comparable to the semimajor axes of
the comets in the Oort cloud, we shall evaluate (5) at the same
semimajor axis @ = 25 000 AU that we used for the comets.
However, the total mass of the binary is m, + m,=2 Mg
instead of 1 M, for a comet bound to the Sun. Thus, equa-
tion (7) becomes

15 =@25X107y) " L fo ff S o (Vﬁ;&.) . (51)

Most of the stars in the Latham et al. sample are G stars,
whose rms z velocity is o, s (f,) = 20 km s~ . Using the mod-
el in Sec. IIlal, their lifetime average z velocity is therefore
(025(t))V? =14 km s~ ! [Eq. (13)], and equations (10) and
(11) yield x = 2.4 and f, = 0.28.

To compute the epicycle factor, we average equation (17)
over the G stars in the solar neighborhood and denote this
averageby (-). Thus (v, — V) is the asymmetric drift of
G stars and is equal to — 9 km s—' (Mihalas and Binney
1981, Table 6.3 and equation 6-30). The mean guiding center
radius is therefore (R,)o =R+ (v, — V.)s/2B =9.6
kpc. According to Sanders et al. (1984), the surface density of
molecular hydrogen at 9.6 kpc is about 10% larger than at 10
kpc; hence we set the epicycle factor f, = 1.1.

The other efficiency factors f,, f;, f,, f, are the same for
wide binaries and comets. Thus our best estimate of the half-
life of wide binaries is

7 =(2.5%107 yr)~'x0.28 X 1.1 X 1X0.5X 1.5 1X0.024 = (4.5 10° yr) ™', (52)

which is similar to the lifetime of a comet at the same semi-
major axis, t,,, = 2.8 X 10° yr [Eq. (45)]. Since the mean age
of the G stars in the solar neighborhood is about the same as
the age of the Sun, the fraction of binaries disrupted should
be comparable to the fraction of comets disrupted. Thus
Bahcall and Soneira’s observation that a substantial fraction
of all stars are members of wide binaries provides strong
evidence that most the Oort comet cloud has also survived.
This result is completely independent of uncertainties in the
density of molecular gas p, or the efficiency factor f;, since
these affect the half-lives of the comets and the binaries in
exactly the same way.

VI. CONCLUSIONS

Our best estimates for the half-life of a comet with semi-
major axis @ = 25 000 AU due to encounters with molecular
and atomic clouds are 3 X 10° and 5 10'° yr, respectively.
For comparison, the half-life due to encounters with field
stars is 3 X 10° yr. The half-life due to field stars is relatively
well determined, but the half-life due to molecular clouds is
quite uncertain, for two main reasons:

(1) The conversion factor from CO intensity to H, column
density, the mean density of molecular gas, the mean surface
density of molecular clouds, and the clumpiness of the
clouds are all imperfectly understood. Our half-life is based
on a mean density p, = 0.024 M, /pc’, and a mean surface

|
density and clumping factor [Eq. (31)] given by NyC
=2X102cm™2,

(2) The temporal evolution of the local molecular-gas den-
sity is poorly known. The density evolves as a result of infall,
star formation, stellar mass loss, and radial evolution of both
the solar orbit and the molecular gas. We have adopted a
mean density over the solar lifetime which is 1.5 times the
present density.

The presence of a large number of wide binary stars with
semimajor axes comparable to those in the Oort cloud pro-
vides an independent argument that the Oort cloud can sur-
vive the disruptive effects of encounters with interstellar
clouds—or any other, as yet undiscovered, massive objects
in the Galactic disk.

Although our conclusions are still tentative, we believe
that the analysis developed in this paper forms a sound basis
for more accurate evaluations of the cometary half-life as our
understanding of the Galaxy improves.

*Note that the analogs of the two mechanisms that have been proposed for
refilling the Oort comet cloud (capture of comets from interstellar space and
scattering of comets out of a reservoir at smaller radii) cannot explain the
existence of these systems. Capture of companion stars from interstellar
space would require a three-body encounter, which occurs at a negligible
rate; scattering of companion stars from smaller radii would yield a flat
distribution in binding energy (Retterer and King 1982), which is inconsis-
tent with the observed distribution of binary separations in the interval [0.01
pc, 0.1 pc] (Bahcall and Soneira 1981).
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APPENDIX

We investigate the half-life of a binary in the limit where
the clouds are so diffuse that the maximum velocity pertur-
bation received in a passage through a single cloud is much
less than the escape velocity from the binary.

Let (x;,%,,x5) be Cartesian coordinates in the rest frame of
the cloud, oriented so that the velocity vector of the binary is
V = V,%;. The potential U (x) from the cloud satisfies Pois-
son’s equation

V2U = 47Gp. (A1)

Assuming that U(x) varies slowly on a scale equal to the
binary separation Ax, the relative acceleration of the binary
components is Aa, where
3 2
da; = — gU 4Ax;. (A2)
j=1 6x ,.Bx '

If we neglect the acceleration of the center of mass of the
binary—which is a good approximation since the escape
speed from a typical cloud is generally much less than the
relative velocity V,—then the center-of-mass trajectory is
X, = constant, x, = constant, x, = V,¢. In the impulse ap-
proximation, the total velocity change is

Av = - A J dx ) .
! ,. ,Z] & ? (Bx ax X),X; = const.
(A3)
Since U /dx;—0 as |x3|— + o, we have
Avy, =0,
2 5B
AU = 2 Ax s i= 1,2’ (A4)
=1 ax,.ax,.
where
1 (=
Bl = — - [ Utk dx, (a5)

Now average the total velocity change Av? = 3, Av? over
orientation, writing (4x,4x;) =} 176, ;» Where ris the bina-
ry separation. Thus
2 2 2
(sz)—lrzz (33), (A6)
=1, \0x,0x;
Next consider the average of (Av?) over the area 4 in x,x,

space, which is large compared to the projected area of the
cloud, so that B——>O at the boundary of 4. We have

J*B \*
Av? =—-—-— dx,d.
(v z]z-—l 4 1 xz(ax.ax,.)
J’B J*B \?
dx s A7
f %1 (32 6x§) (A7)

where the second line follows by integrating the term (3°B /
9x,0x,)* by parts. We may now write
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ax3

2 2
Ix7 8x2 3

the contribution from the second term of the integrand van-
ishes, since U—0 as |x;|— 0, and using Poisson’s equation
(A1), we have

&’B | B 47GZ (x,,x,)
+ = — ’
Ixi  9x: v,
where X is the surface density of the cloud. The average

value of 7 is ] a® for binaries which are uniformly distributed
on the energy hypersurface in phase space, and thus

287° G’ a
3 V2

(A9)

(4v?) = y f 3 %dx, dx,. (A10)
A

The rate of encounters with clouds is n4¥,, where n is the
number density of clouds, so the mean-square change in v in
a time interval 4t is

2 2
(A0 = 287 G *naAt
3
At this point, we can define 4 to be the area of the cloud

itself, since the surface density is zero outside the cloud. We
next average over relative velocity using the result ¥ (1/V, )

= \6/7, where Vis the rms relative velocity. The total mass
density in clouds is p = n § X dx, dx, and so we may write

7.25/2'17.3/2 G22‘12

f 3 2dx,dx,. (A11)
A

(4v?) =—m 7 2z, CAt, (A12)
where the average surface density in the cloud is
z
3. Euﬂ (A13)
Sqdx,dx,
and the clumping factor is
:f,,zzdxldx,j‘,, dx, dx, (Al4)

(f4 2 dx;dx,)?

Having these results, we may now solve the Fokker-Planck
equation, which governs the evolution of the binaries. Let
x = G (m, + m,)/(2a) be the binding energy per unit mass
and let p(x,t) dx be the probability that a binary has binding
energy in the range x—x + dx at time z. The Fokker—Planck
equation for p(x t) reads

% _ _9d
o (P 1)+232

where x; and X, are the mean and mean-square fluctuations
in x per unit time. We have

(px5), (A15)

1 {Av®) K
X =—-——"—"=——,
2 At 2x?
2 2
= SAVY) 1oy (40 2K (A16)
At 3 At 3x

where we have used the virial theorem (v?) = 2x and where

7212212 Gp(m, + m,) EauC

K= 3172 v (A17)
Equation (A 15) now reads

dp 1 4d (p) 1 62( )]

£ _K|l—— (£ . Al8

ar 2 dx \x? t3 3 9x? (AL8)

The Green’s function pg(x,t) defined by pg(x,z=0)
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= 8(x — x,) is

5/4..3/4 3 3 3/2
xg/*x x5 +x ) [Z(xxo) ]
x,t)=———exp| — —— ) I5;6 | —2—|,
Polxt) Kt p( 3kr /7 3ke
(A19)

where I denotes a modified Bessel function. The fraction of
binary stars remaining after time # is

f(t)=fpc(x,t)dx

_ E.xa/3Ke)
T

where y and I" denote the incomplete and complete gamma

, (A20)
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functions.* The half-life is defined by f(z,,,) = 1, which oc-
curs when x3 /3Kt = 0.5330, and hence

— Vim, + m,)
0.5330-56-6'/2.7m°/°Gpa*3,,C
Vim, + m)
Gpa®s,,C
the result quoted in Equation (30).

(A21)

Lz

=0.0025

*After this work was complete, we learned that Bailey (1985) has indepen-
dently derived equations (A 19) and (A20), although with a different formula
for the diffusion coefficient K.
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